Skip to main content

Lab2

Complied C Lab

In this lab, we were asked to compile a C program, using gcc command with different options.

At the beginning of this lab, we wrote a simple C program that prints a message:

Then using gcc command and the following compiler options to compile the program:
-g               # enable debugging information
-O0              # do not optimize (that's a capital letter and then the digit zero)
-fno-builtin     # do not use builtin function optimizations

Note that the size of file is 73088 bytes

We can use objdump --source a.out command to show source code, the source code is under <main> section. And readelf -p .rodata a.out contains the string to be printed.


Then we add the option "-static" to recompile the program, found out the size is changed to 696264 bytes, which is bigger than the original program. And section headers are also increased.

Next, I removed the builtin function optimization by remove option "-fno-builtin", and rebuilt the program. Note that the size is smaller than using the built-in function to 696256 bytes.

Then I disabled debugging information by removing option "-g"
Note that the size is smaller to 693840 bytes
And there are also more section headers and disassembly outputs.

With adding a number to the argument of printf() function, we note the argument is assigned to a register and added to a stack, and moved.

Finally, I added an option "-O3" instead of "-O0", which is stand to optimization level to 3, I found that the size is not changed, but the lines are less than original.

Comments

Popular posts from this blog

SPO600 - Project - Stage Three

In this last stage of my SPO600 project, Since I don't have results suitable for upstreaming, I am going to wrap up my project results and do some thorough technical analysis of my results. First of all, I am going to summary what I did for my project. (If you want to go over the details, you can see my previous posts.) I picked a software called SSDUP, it is a traffic-aware SSD burst buffer for HPC systems. I noticed that it uses 3 different Murmurhash3 hash functions, the first two hash functions are optimized for x86 platforms and the third hash function is optimized for x64 platforms. I also noticed that it uses 'gcc -std=gnu99' to compile. In order to easier to handler these 3 hash functions, I split them into 3 files and separately testing them on an AArch64 and x86_64 systems. As the professor said my results in stage two is hard to read, I am going to show my results again in a table format. First hash function (MurmurHash3_x86_32), the execution time for -O3...

SPO600 - Project - Stage One

In our final project, the project will split into 3 stages. This is the first stage of my SPO600 course project. In this stage, we are given a task to find an open source software package that includes a CPU-intensive function or method that compiles to machine code. After I chose the open source software package, I will have to benchmark the performance of the software function on an AArach64 system. When the benchmark job is completed, I will have to think about my strategy that attempts to optimize the hash function for better performance on an AArch64 system and identify it, because those strategies will be used in the second stage of the project. With so many software, I would say picking software is the hardest job in the project, which is the major reason it took me so long to get this post going. But after a lot of research, I picked a software called SSDUP , it is a traffic-aware SSD burst buffer for HPC systems. You can find the source code over here: https://github.com/CGC...