Skip to main content

Lab 3

In this lab, we are going to use Assembly language to finish 3 parts.
1. As we are getting familiar with Assembly language, we will create a loop in Assembly to prints out 10 times of "Hello World!". This part is quite easy to do it, here is the source code for x86_64 assembler:
------------------------------------------------------
.text
.globl    _start

start = 0                       /* starting value for the loop index; note that this is a symbol (constant), not a variable */
max = 10                        /* loop exits when the index hits this number (loop condition is i<max) */

_start:
    mov     $start,%r15         /* loop index */
    mov     %r15,%r10

loop:
        /* ... body of the loop ... do something useful here ... */

    movq        $len,%rdx
        movq    $msg, %rsi
        movq    $1, %rax
        movq    $1, %rax
        syscall

    inc     %r15                /* increment index */
    cmp     $max,%r15           /* see if we're done */
    jne     loop                /* loop if we're not */

    mov     $0,%rdi             /* exit status */
    mov     $60,%rax            /* syscall sys_exit */
    syscall

.section .rodata
msg:    .ascii       "Hello World!\n"
        len = . - msg
------------------------------------------------------

The output shows below:
------------------------------------------------------
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
------------------------------------------------------

2. The second part is getting harder, we will have to improve the assembly loop code, in order to prints out Loop 0 to Loop 9. Here is the source code I wrote in x86_64 assembler:
------------------------------------------------------
.text
.blobl    _start

stdout = 1
start = 0                        /* starting value for the loop index; note that this is a symbol (constant), not a variable */
max = 10                         /* loop exits when the index hits this number (loop condition is i<max) */
pos = 6                          /* position of character to be replaced in string */
pos2 = 7                         /* position of newline character */

_start:
    mov     $start,%r15          /* loop index */

loop:
    /* ... body of the loop ... */
    mov     $len,%rdx            /* message length */
    mov     $48,%r14             /* move immediate value 48 (ascii zero) to r14 */
    mov     $10,%r12             /* move immediate value 10 (newline) to r12 */
    add     %r15,%r14            /* add r15 (loop index) to r14 */
    mov     $pos,%r13            /* move value of pos to r13 */
    mov     $pos2,%r11           /* move value of pos2 to r11 */
    mov     $msg,%rsi            /* message location */
    add     %rsi,%r13            /* add rsi (message location) to r13 and store in r13 */
    add     %rsi,%r11            /* add rsi (message location) to r11 and store in r11 */
    mov     %r14,(%r13)          /* move data from r14 to address pointed to by r13 */
    mov     %r12,(%r11)          /* move data from r12 to address pointed to by r11 */
    mov     $stdout,%rdi         /* file descriptior stdout */
    mov     $1,%rax              /* syscall sys_write */
    syscall

    inc     %r15                /* increment index */
    cmp     $max,%r15           /* see if we're done */
    jne     loop                /* loop if we're not */

    mov     $0,%rdi             /* exit status */
    mov     $60,%rax            /* syscall sys_exit */
    syscall
.data

msg:     .ascii  "Loop: x\n"
.set len, . - msg               /* current memory location minus value of label msg */
------------------------------------------------------

And I got the output:
------------------------------------------------------
Loop: 0
Loop: 1
Loop: 2
Loop: 3
Loop: 4
Loop: 5
Loop: 6
Loop: 7
Loop: 8
Loop: 9
------------------------------------------------------

3. In the final part of this lab, it is more complicated. We were being asked to creating a loop to prints out Loop 0 to Loop 29 in Assembly language. Here is the source code I wrote in x86_64 Assembly:
------------------------------------------------------
.text
.global  _start

start = 0 /* loop index starting value */
max = 30 /* loop exits when the index hits this number */

_start:
mov     $start,%r15 /* set loop index */

loop:
mov $0,%rdx /* clear register */
mov %r15,%rax /* store dividend in register */
mov $10,%r10 /* store divisor in register */
div %r10 /* divide */
mov %rax,%r11 /* store quotient in register */
mov %rdx,%r12 /* store remainder in register */
cmp $0,%r11 /* check if quotient is 0 */
je next /* jump if quotient is 0 */
add $0x30,%r11 /* convert to ascii */
mov %r11b,msg+6 /* place quotient in msg */

next:
add $0x30,%r12 /* convert to ascii */
mov %r12b,msg+7 /* place remainder in msg */
        mov $len,%rdx /* message length */
        mov $msg,%rsi /* message location */
        mov $1,%rdi /* file descriptor stdout */
        mov $1,%rax /* syscall sys_write */
        syscall /* syscall */

inc     %r15 /* increment index */
cmp     $max,%r15 /* check if index is at max */
jne     loop /* loop if index not at max */

        mov $0,%rdi /* exit status */
        mov $60,%rax /* syscall sys_exit */
        syscall /* syscall */

.data

msg:    .ascii      "Loop:   \n"
.set len , . - msg
------------------------------------------------------

I also wrote an Aarch64 version:
------------------------------------------------------
.text
.global _start

start = 0                               /* loop index starting value */
max = 30                                /* loop exits when the index hits this number */

_start:
        mov     x3,start                /* set loop index */

loop:
        mov     x9,10 /* store divisor in register */
        udiv    x10,x3,x9 /* divide and store quotient in register */
        msub    x11,x9,x10,x3 /* store remainder in register */
adr     x1,msg                  /* message location */
cmp     x10,0 /* check if quotient is 0 */
b.eq    next /* jump if quotient is 0 */
add     x12,x10,0x30            /* convert to ascii and store in register */
strb    w12,[x1,6]              /* place quotient in msg */

next:
add     x13,x11,0x30            /* convert to ascii and store in register */
strb    w13,[x1,7]              /* place remainder in msg */
        mov     x2,len                  /* message length */
        mov     x0,1                    /* file descriptor stdout */
        mov     x8,64                   /* syscall sys_write */
        svc     0                       /* syscall */

        add     x3,x3,1                 /* increment index */
        cmp     x3,max                  /* check if index is at max */
        b.ne    loop                    /* loop if index not at max */

        mov     x0,0                    /* exit status */
        mov     x8,93                   /* syscall sys_exit */
        svc     0                       /* syscall */

.data

msg: .ascii "Loop:   \n"
.set len, . - msg
------------------------------------------------------

Which will get the same output below:
------------------------------------------------------
Loop:  0
Loop:  1
Loop:  2
Loop:  3
Loop:  4
Loop:  5
Loop:  6
Loop:  7
Loop:  8
Loop:  9
Loop: 10
Loop: 11
Loop: 12
Loop: 13
Loop: 14
Loop: 15
Loop: 16
Loop: 17
Loop: 18
Loop: 19
Loop: 20
Loop: 21
Loop: 22
Loop: 23
Loop: 24
Loop: 25
Loop: 26
Loop: 27
Loop: 28
Loop: 29
------------------------------------------------------

Overall, this lab is pretty difficult for me, Assembly language is much more complicated than other languages such as C/C++ Java, etc. It has to convert the number to Ascii number and combined it to print a string out.
What is different between x86_64 Assembly language and Aarch64 Assembly?
In my opinion, these Assembly languages are not much different, but I would say x86_64 is easier to code. In x86_64 Assembly language, it takes 2 arguments and stores the result in the second argument. In AArch64, it stores the result into argument 1, and uses values from argument 2 and argument 3.

Comments

Popular posts from this blog

Lab2

Complied C Lab In this lab, we were asked to compile a C program, using gcc command with different options. At the beginning of this lab, we wrote a simple C program that prints a message: Then using gcc command and the following compiler options to compile the program: -g # enable debugging information -O0 # do not optimize (that's a capital letter and then the digit zero) -fno-builtin # do not use builtin function optimizations Note that the size of file is 73088 bytes We can use objdump --source a.out command to show source code, the source code is under <main> section. And  readelf -p .rodata a.out contains the string to be printed. Then we add the option "-static" to recompile the program, found out the size is changed to 696264 bytes, which is bigger than the original program. And section headers are also increased. Next, I removed the builtin function optimization by remove option "-fno-builtin"...

Lab 6A

This lab is separated into two parts, I'll blog my work in different post. In the first part, we've got a source code from professor Chris, which is a similar stuff to our lab5, scaling the volume of sound, but it includes inline assembler. The first thing I'll do is add a timer to the code in order to check the performing time. Build and run the program, here is the output: ------------------------------------------------------------------------- [qichang@aarchie spo600_20181_inline_assembler_lab]$ ./vol_simd Generating sample data. Scaling samples. Summing samples. Result: -462 Time: 0.024963 seconds. ------------------------------------------------------------------------- Then I adjusted the number of samples to 5000000 in vol.h: ------------------------------------------------------------------------- [qichang@aarchie spo600_20181_inline_assembler_lab]$ cat vol_simd.c // vol_simd.c :: volume scaling in C using AArch64 SIMD // Chris Tyler 2017.11.29-2018...

Lab 5

In this lab, we are going to use different approaches to scale volume of sound, and the algorithm’s effect on system performance. Here is some basic knowledge of digital sound: Digital sound is usually represented by a signed 16-bit integer signal sample, taken at a rate of around 44.1 or 48 thousand samples per second for one stream of samples for the left and right stereo channels. In order to change the volume of sound, we will have to scale the volume factor for each sample, the range of 0.00 to 1.00 (silence to full volume). Here is the source code I got from professor: (vol1.h) ------------------------------------------------- #include <stdlib.h> #include <stdio.h> #include <stdint.h> #include "vol.h" // Function to scale a sound sample using a volume_factor // in the range of 0.00 to 1.00. static inline int16_t scale_sample(int16_t sample, float volume_factor) { return (int16_t) (volume_factor * (float) sample); } int main() { // Al...